Periodic BVPs in ODEs with time singularities
نویسندگان
چکیده
منابع مشابه
Periodic BVPs in ODEs with time singularities
In this paper we show the existence of solutions to a nonlinear singular second order ordinary differential equation, u(t) = a t u(t) + λf(t, u(t), u(t)), subject to periodic boundary conditions, where a > 0 is a given constant, λ > 0 is a parameter, and the nonlinearity f(t, x, y) satisfies the local Carathéodory conditions on [0, T ] × R × R. Here, we study the case that a well-ordered pair o...
متن کاملNew Parallel Algorithms for BVPs in ODEs
صخلملا لئاسـم لـحل ةيزاوتم ةديدج ةقيرط ريوطت وه يسيئرلا ثحبلا اذه فده لضافتلا تلاداعملا يف ةيموختلا ميقلا ةيزاوتم تابساح يف ذيفنتلل ةمئلام ةيدايتعلاا ةي عون نم MIMD ) دحاو نآ يف ةددعتم تايلمع تاذ تابساح .( ةيـصاخ ةسارد تمت ةداـيز قـيرط نع ةقيرطلا نيسحت متو ةقيرطلل أطخلا ىلع ةرطيسلاو ةيرارقتسلأا يعجرلا لماكتلاو تانيمختلا ددع . ةـفاجلا ةـيموختلا ميـقلا لئاسم ةجلاعم تمت امك ةركتبملا ةقيرطلاب . A...
متن کاملEstimating conditioning of BVPs for ODEs
Abst rac t -An alternative to control of the global error of a numerical solution to a boundary value problem (BVP) for ordinary differential equations (ODEs) is control of its residual, the amount by which it fails to satisfy the ODEs and boundary conditions. Among the methods used by codes tha t control residuals are collocation, Runge-Kut ta methods with continuous extensions, and shooting. ...
متن کاملTwo - point higher order BVPs with singularities in phase variables ∗
The existence of solutions for singular higher order differential equations with the Lidstone or the (n, p) boundary conditions is proved. The righthand sides of differential equations can have singularities in the zero value of their phase variables and so higher derivatives of solutions changing their signs can pass through these singularities. Proofs are based on the method of a priori estim...
متن کاملLocal Lyapunov Functions for periodic and finite-time ODEs
Lyapunov functions for general systems are difficult to construct. However, for autonomous linear systems with exponentially stable equilibrium, there is a classical way to construct a global Lyapunov function by solving a matrix equation. Consequently, the same function is a local Lyapunov function for a nonlinear system. In this paper, we generalise these results to time-periodic and, in part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2011
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2011.06.048